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A quantum chemical view of charge transfer related to the
Jahn–Teller effect involving two-electron functions (geminals) is
compared with BCS theory, the Cooper pair, and Bipolaron
theory. For different isotope effects, we have proposed a Ren-
ner–Teller mechanism for cyclic crystals (instead of linear mol-
ecules) and a Jahn–Teller effect for degenerate vibronic states
(instead of degenerate electronic states alone). To illustrate
examples of special doping structure in superconductors, we
consider (YBa2Cu3O7–0.25)4 and (Nd2–0.125Ce0.125CuO4–0.625)2]]4 and
employ exciton-like Covalon states to render an improved de-
scription of the superconductive mechanism. (( 1997 Academic Press

I. INTRODUCTION

For an improved description of superconductivity, we
propose special structures and effects for the superconduc-
tors. These improvements include the consideration of addi-
tional degeneracies beyond those previously used in models
of charge transfer (1—4) and the use of geminals (two-
electron wave functions) in lieu of one-electron molecular
orbitals. The geminal model is compared with, and goes
beyond, the Cooper pair (5) and the BCS theory (6) of
superconductivity. Moreover, we emphasize the inclusion of
additional vibrational degeneracies, besides the electronic
degeneracy in the spectroscopy of the Jahn—Teller effect
(7—9). We also propose a new aspect of the Renner—Teller
effect (10) arising from our use of cyclic crystals instead of
linear molecules. These new Jahn—Teller and Renner—Teller
effects, as well as our consideration of special structures for
superconductors, will extend the interaction of the struc-
tural sites beyond the nearest-neighbor model, which is
related to the simple antisymmetric vibration of nearest
neighbors. This extension represents an improvement over
the displaced-oscillator (nearest-neighbor) interaction in the
Bipolaron theory (11) of superconductivity.
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II. CONDUCTIVITY OF CHARGE TRANSFER

We introduce the special consideration of charge transfer
as a viable mechanism for conductivity. It will serve as
a suitable starting point to be modified and extended to
describe superconductivity.

As early as 1960, Bader (12) considered the charge
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The te
0
(1+`
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) state has four electrons in n

u
and the
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1
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) state has three electrons in n

u
and one electron in

n
g
. The difference between them may be approximated as

one electron n
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state versus one electron n
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state. If there
are three linearly arranged atoms in the n state, we may
consider one atom a at the left with an atomic orbital
n
a-
, another identical second atom a at the right with an

atomic orbital n
a3

, and the third atom b in the middle with
a different coefficient B and with the atomic orbital Bn

b.
.
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. Its charge structure without

vibration is n
g
&#f!. Here f stands for no electron

and # and ! designate the upper and lower n electrons,
respectively.
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The change in charge density due to the mixing in Eq. [1]
may be approximately visualized as
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The above conductivity due to vibronic charge transfer
is a single-electron molecular orbital consideration, but
superconductivity in a solid-state infinite crystal, which can
be regarded as a cyclic crystal system, is mainly considered
as arising from the paired double-electron treatment with
momentum k"0 in BCS theory (6).

Instead of coupling the electrons in a Cooper pair (5, 13)
for low-¹

#
superconductors, below we shall correlate their

motion by invoking (two-electron) geminal states, along
with their different vibronic transitions, and compare
the result with the charge-transfer mechanism and BCS
theory.

III. THE GEMINAL MODEL

For a two-electron (e
1
, e

2
) vibronic interaction we pro-

pose the quantum-chemical view of the cyclization of the
Bloch sum of geminal-type electronic states (te ) and vibra-
tions (Q) for atomic orbitals and displacements, respectively,
in a nearest-neighbor approximation at an interatomic dis-
tance of a:
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These electronic states are different from the Cooper pairs of
BCS theory, whose electrons have opposing momenta,
$+k, viz.,
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We also include cyclic vibrations for their use in vibronic
transitions, i.e.,
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Because 2n+"/(2N#2)a"2n(r]p)
z
/2nr"+k is the mo-

mentum p of the electron pair, as in BCS theory, we choose
(k!k"0) so that the ground state of the electron pair is
represented by the spin geminal t

0
(1, 2).

In analogy to Eq. [1] the charge transfer may be de-
scribed by vibronic transitions from the ground state, i.e.,
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For a system of 2N#2 electrons the ground state of the
total system is
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The normalization constant (N#1)! is due to the equiva-
lence of the (N#1) geminal permutations. The normaliz-
ation factor (2!)N`1 arises from each of the (N#1) geminals
which already contain 2! permutations (cf. Eq. [4]). The
vibronic energy of the geminals is a little different from that
given in the following section.

IV. COMPARISON OF THE SECOND-ORDER
JAHN–TELLER ENERGY WITH THE LIMITED

ANALOGS OF THE BCS AND BIPOLARON THEORIES

The energy expressions arising from these quantum
chemical vibronic interactions may be compared with those
of the electron—phonon of the BCS theory of Cooper pairs
(13). In the latter formulation a` and a are electron creation
and annihilation operators, while a`

q
and a

q
denote phonon

creation and annihilation operators. For a first-order per-
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turbation,
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one makes use of the contact-transformation operator,
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to deduce the diagonal part of the second-order electron—
electron interaction
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To arrive at this result it is necessary to recall that BCS
theory considers the phonon system to be in the ground (or
zero) vibrational state. Hence, upon integrating over the
phonon states, Eq. [11] results because only operators of
the type a

q
a`
q

are nonzero in the zero vibrational state.
Parallel relations may be obtained from the quantum

chemical perturbational treatment of vibronic interactions,
in which the zero-order Hamiltonian is assumed to be the
sum of the nuclear kinetic energy and the electronic
Hamiltonian. Perturbations are obtained by expanding the
electronic Hamiltonian in a Taylor series involving the
vibrational modes. The equations corresponding to the
above BCS relations emerge when the first-order perturba-
tion is taken to be those terms that are linear in the vibra-
tional mode. In turn, they may be cast in terms of the
creation/annihilation operators. When this is done, the ex-
pectation values of the operators are evaluated and it is
found that the nonvanishing matrix elements that contrib-
ute to the expectation values have the form
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Comparison of Eqs. [9] and [12] shows that the vibronic
integrals occurring in the latter equation have been assigned
a common value, D, in BCS theory. Further illustration of
this correspondence of D and the vibronic integrals is given
by the example of an electron—phonon interaction involving
the degenerate electron-pair states, E

k
"E

~k
, and the vibra-

tional mode q"2k. Since the first-order contact trans-
formation diagonalizes the Hamiltonian to first order, there
are no first-order corrections to the energy. Furthermore,
the second-order contributions arise from only the diagonal
part of the second-order corrections, which is why we have
displayed only that part. Hence, for this case
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where u"Jf /m and b"Jmf /+"mu/+ .
This example is equivalent to the Jahn—Teller result for

a double-well potential arising from a perturbed harmonic
oscillator potential with force constant f, viz.,

E
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2
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The harmonic oscillator potential is of second degree in
Q and has a diagonal contribution, while the last term is the
perturbing potential and is linear in Q.

For the minima, the potential satisfies
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The quantity *E"DSLH/LQT
0
D2/2 f is related to the

high-¹ superconductivity gap of Bipolaron theory (11) for
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which SLH/LQT is an exchange integral between two
nearest-neighbor atoms separated by a distance a. In that
theory the first-order Hamiltonian H @ and the second-order
energy are
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respectively. The exchange integral is evaluated by
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The nearest-neighbor effect is essentially due to cos ka. In
doped superconductors there may be contributions from
more distant neighbors such as cos 2ka, cos 3ka, etc. The
interatomic distance, a, may also be different due to doping.
Thus the Jahn—Teller effect for the interaction between two
degenerate electronic states (giving rise to a double-well
potential whose minima are at equal depth) is also compara-
ble to the interaction of two equivalent (degenerate) neigh-
boring atoms. Nevertheless, our aim is to emphasize the
two-electron geminal treatment for the case of a cyclic
crystal. Furthermore, we want to go beyond the second-
order energy of the BCS and Bipolaron theories.

V. ILLUSTRATION OF THE GEMINAL MODEL:
A POSSIBLE SPECIAL JAHN–TELLER EFFECT

FOR C
4
H

4

One of the reasons for basing our model on the cyclic
geminal state may be illustrated with the simple case of the
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With this example, the Jahn—Teller effect yields a second-
order energy in complex and real states,
E (2)"!

DSt
1
(3, 4)s1 (Q

2
) DQ

2
LH/LQ

2
Dt

~1
(3, 4)s0 (Q

2
)TD2

+u
2

+!

1

2 C
DSt

x
(3, 4)s1 (Q

x2~y2
) DQ

x2~y2
LH/LQ

x2~y2
D t

x
(3, 4)s0 (Q

x2~y2
)TD2

+u
x2~y2

#

DSt
y
(3, 4)s1 (Q

x2~y2
) DQ

x2~y2
LH/LQ

x2~y2
D t

y
(3, 4)s0 (Q

x2~y2
)TD2

+u
x2~y2

D [23]

+!T
LH

LQU
2 (J+/2mu)2

+u
"!K T

LH

LQU K
2

N2mu2"!K T
LH

LQU K
2

N2 f

"*EJm~a,



FIG. 1. New Jahn—Teller effect, not only for degenerate electronic geminal states (tx
1

and ty
1
), but also for degenerate vibronic states [tx

1
s(Q

x
) and

ty
1
s(Q

y
)].
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in which a"0 (meaning no isotope effect for the second-
order energy). This is similar to the results of both Kittel
(cf. Eq. [15]) and the Bipolaron theory (cf. Eq. [21]).

VI. A NEW RENNER–TELLER EFFECT FOR CYCLIC
CRYSTALS WITH THE GEMINAL MODEL

Next we would like to consider cases for superconductors
in which: (i) vibronic interactions may arise from corrections
other than the second-order energy, (ii) more than purely
electronic degeneracy is involved, and (iii) nonzero isotope
effects may occur. The first-order energy involving the de-
generacy of both the electronic and vibrational states is well
known in the Renner—Teller effect for linear molecules.
Nevertheless, we will propose this Renner—Teller mecha-
nism for cyclic crystals.

For a molecule lying along the z axis the degenerate
one-electron states are (t
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quantum number s"0, 1, 2,2 . In a molecule there is no
vibronic interaction for a vibrational mode Qj with
j5$2. A simple example of the Renner—Teller first-order
energy, according to Pople and Longuet-Higgins (10), is
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Because our cyclic crystal can exhibit vibrational modes
with pseudo-angular momenta (Eq. [5]) ""0,$1,$2,

2 along the z axis, we propose a new Renner—Teller effect
involving the vibronic states t

$"s1(Q
G" ) with " lying

beyond the $1 found in molecules. As Eqs. [24] and [25]
indicate, the first-order energy is
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for the previous case of cyclic C

4
H

4
is for the topmost

electrons,

E (1)"
1

2
St

1
(3, 4)s1(Q

~1
) D

L2H

LQ2
1

Q2
1
#

L2H

LQ2
~1

Q2
~1

]D t
~1

(3, 4)s1 (Q
1
)T

+St
x
(3, 4)s1 (Q

x
)s0(Q

y
) D

L2H

LQ
x
LQ

y

Q
x
Q

y

]D t
y
(3, 4)s0(Q

x
)s1 (Q

y
)T [27]

"T
L2H

LQ
x
LQ

y
US

+
2m

x
u

x
S

+
2m

y
u

y

+T
L2H

LQ
x
LQ

y
U

+
2m

1
u

1

"T
L2H

LQ
x
LQ

y
U

+

2Jm
1

f

Jm~a
1

"m~1@2
1

.

This isotope effect with a"1/2 is different from that of the
second-order energy with a"0 (Eq. [23]).

VII. A NEW JAHN–TELLER EFFECT FROM
DEGENERATE VIBRONIC STATES

Going beyond the Jahn—Teller effect for degenerate elec-
tronic states, we propose a new Jahn—Teller effect that
involves degenerate vibronic states in the Renner—Teller
case (Fig. 1)
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where the isotope effect is different from the usual Jahn—
Teller result of a"0 (Eq. [23]). The possibility of electronic
matrix elements of t

x
and t

y
for the Jahn—Teller effect is due

to the symmetry relationship

x]y](x2!y2 )+b
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where a
2g

is symmetric with respect to the operations of the
cyclic group C

4
. This simple illustration of cyclic C

4
H

4
that

uses the uppermost vibration Q
2
&Q

x2~y2
amounts to an

antisymmetric vibration between nearest neighbors that
affects the electronic motion. It is very similar to the case
of displaced equivalent oscillators that are related to the
Bi-polaron motion between nearest neighbors.

VIII. VIBRONIC INTERACTIONS BETWEEN DISTANT
NEIGHBORS

For superconductors that are doped at sites of distant
neighbors, we will consider different vibrational modes to
allow for different lengths of charge transfer (14). Moreover,
we will consider the effect of electronic tunneling (14).

As an example, consider the case in which six linearly
arranged atoms (15) have vibrational compressions and
extensions at different places (say, between 0—1 and 4—5),
e.g., 0PQ1Q2Q3Q4 5P[l

4
(p`

u
)]. This vibration is

quite different from the nearest-neighbor case between 2—3
and 3—4, i.e., Q0Q1 2PQ3 4P5P[l

2
(p`

g
)]. In fact,

the nearest-neighbor case is more similar to the Jahn—Teller
(vibronic) interaction (7—9, 16) with the degenerate vibration
C"C—C and C—C"C, due to CPQC CP and QC
CPQC, respectively.

As a more concrete example of the use of a vibrational
mode of the the type l

4
(p`

u
), we consider the doped super-

conductor (YBa
2
Cu

3
O

7—0.25
)
4
"Y

4
Ba

8
Cu

12
O

28—1
, in

which one oxygen along the copper-oxide line,
Cu

1
—O—Cu

2
—O—Cu

3
—O—Cu

4
—Cu

5
, has been lost, namely

that between Cu
4
—O—Cu

5
and Cu

4
—Cu

5
(cf. Fig. 2). Al-

though other possibilities, such as O2~ to O~, may occur,
for illustrative purposes, we consider the electrically neutral
species Y3`

4
Ba2`

8
Cu2`

10
Cu3`

2
O2~

27
, in which Cu2`(3d9) has

one antibonding electron and the dopant Cu3`(3d 8 ) has
one electron hole. Then, as indicated in Fig. 3, according
to our simple hypothetical vibrational mode, for a doped
copper-oxide line containing six copper atoms, we have

Cu2̀
0
PQCu2̀

1
—OQCu2̀

2
—OQCu2̀

3
—OQCu3̀

4
—Cu3̀

5
P.



FIG. 2. Hypothetical doped state of YBa
2
Cu

3
O

7~x
with a large emphasized cell built with four unit cells and with a loss of oxygen near the two

coppers at the middle of the right unit cell (between d4 and d5 of Cu). In addition to the increase of positive charge of the copper from Cu2` to Cu3`, we
can also consider the decrease of the negative charge of the oxygen that will yield the neutral species Y3`

4
Ba2`

8
Cu2`

12
O2~

25
O~

2
.
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The next doped copper—oxide line is

QCu3̀
0

—Cu3̀
1
PO—Cu2̀

2
PO—Cu2̀

3
PO—Cu2̀

4
PQCu2̀

5
.

In this simple model we may state qualitatively that the loss
of the oxygen (negative charge) will cause the highly posit-
FIG. 3. The position with the loss of the negative charge of the oxygen wi
the higher positive charge of the nearby copper (Cu3`, 3d8). The conductio
a (hypothetically simplified) vibration for the large emphasized cell similar to
the same as the antisymmetric vibration for the conjugated carbon n-bond
ively charged atoms of Cu3`(3d8) to move away from each
other via this vibration. Another thing to be considered is
the speed of electron tunneling along a doped line versus the
time of the vibrational movement. In this regard it is of
interest to know how many doped species can be traversed
ll favor the lower positive charge of the copper (Cu2`, 3d9) and will disfavor
n change of the copper holes from two Cu3` to two Cu2` is illustrated by
l
4
(p`

u
) with contraction and expansion differing by four neighbors. It is not

movement to the nearest neighbor.
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by the tunneling mechanism before the vibrational motion
reverses and stops the electron’s forward movement.

IX. VIBRONIC EFFECTS IN DOPED STRUCTURES
WITH THE COVALON MODEL

In addition to the geminals constructed from a symmetry-
adapted linear combination of pair functions (cf. Eq. [3]),
we next examine the running-wave model of excitons
(17, 18), which we have previously considered as Covalons
(19—21). Again, instead of the nearest-neighbor movement
of the excitons (denoted by an asterisk), such as
C"C*"C—C"C to C"C—C"C*"C, we look at the motion
of the distant neighbors, basing our model on the doping
distance.

For the doped superconductor (Nd
2—0.125

Ce
0.125

CuO
4—0.0625

)
2]4

"Nd
15

CeCu
8
O

31.5
, we consider the loss

of one oxygen between two doping Cu atoms (e.g.,
Cu—O—Cu to Cu—Cu). In the resulting Cu—Cu bond we
also consider the special existence of one Ce4` along the
bond (cf. Fig. 4). To maintain charge neutrality in this
example, we assign the following oxidation states,
Nd3`

15
Ce4`Cu2`

6
Cu`

2
O2~

31.5
. Because Cu`(3d10) has two

antibonding electrons among the topmost dsp2 hybrid, we
consider the four antibonding electrons of Cu`—Cu` to be
an exciton or Covalon (indicated by an asterisk) near the
site of the doping Ce4`, as well as that of three displaced
FIG. 4. Hypothetical doped state of Nd
2~x

Ce
x
CuO

4~y
with a

large emphasized cell built with four unit cells and with a loss of oxygen
near the two coppers at the top of the right unit cell (between d3 and d4
of Cu).
oxygens. This copper-oxide line is different from its nearest
neighbor (Fig. 5). For it we may propose the hypothetical
vibration (for six copper atoms), Cu`

n~1
PQCu`

n
—

OQCu2`
n`1

—OQCu2`
n`2

—OQCu`*
n`3

—Cu`*
n`4

P and for its
immediate overlapping neighbor lying to the left,
QCu`*

n~5
—Cu`*

n~4
PO—Cu2`

n~3
PO—Cu2`

n~2
PO—Cu`

n~1
P

QCu`
n

. This means that the electronic bonding in the right
set (first case) is different from that of the left set (second
case). In the right set the qualitatively different bonding
(indicated by *) that occurs for n#1, n#2 and n#3,
n#4, may be represented by

t*
n`1,n`4

(1, 2,2 , 6)"/*
n`1,n`2

(1, 2)/**
n`3,n`4

(3, 4, 5, 6),

[29]

where for the first two Cu2` atoms

/*
n`1,n`2

(1, 2)"1
2
[/

n`1
(1)/

n`2
(2)

[30a]
#/

n`1
(2)/

n`2
(1)] (a

1
b
2
!b

1
a
2
),

and for the next two Cu`* atoms,

/**
n`3,n`4

(3, 4, 5, 6)"D/*
n`3

(3)/*
n`3

(4)/*
n`4

(5)/*
n`4

(6) D .

[30b]

The orbitals / and /* do not stand for the copper atoms
alone. Both represent the local copper oxide; however, /*
also includes the metallic doping. This means that there are
less antibonding electrons (only two) in the regular copper
oxides (n#1, n#2) than there are in the Cu` copper
oxides. The latter have less oxygen and an excited Ce4` in
place of Nd3`.

The left set (containing Cu2`
n~3

, Cu2`
n~2

, Cu`
n~1

, Cu`
n

)
accommodates other electrons

t
n~3,n

(7, 8,2 , 12)"/
n~3,n~2

(11, 12)/
n~1,n

(7, 8, 9, 10),

[31]

where for the two Cu2` atoms

/
n~3,n~2

(11, 12)"1
2
[/

n~3
(11)/

n~2
(12)

[32a]
#/

n~3
(12)/

n~2
(11)] (a

11
b
12
!b

11
a
12

),

and for the two Cu` atoms,

/
n~1,n

(7, 8, 9, 10)"D/
n~1

(7)/
n~1

(8) /
n
(9)/

n
(10) D . [32b]

Aside from the number of antibonding electrons involved
in the bonding in these monovalent (4e~’s) and divalent
(2e~’s) species, a difference arises because of the fact that
during the course of our hypothetical vibration, the



FIG. 5. The conduction change of electrons due to different electron charge density between the lower state (near Cu`) and excited state (near Cu`*)
of the doped area (with Ce replacement of Nd) again illustrated by a hypothetically simplified vibration related to l

4
(p`

u
) of six atoms. The change is

toward the fourth neighbor because of the large (multiple) cell due to the doping structure.
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Cu`*—Cu`* bond is expansive while the Cu`—Cu` bond is
compressive. The energetic difference between t* and t is
the main concern of the theories of exciton and Covalon
states. The above expressions reflect just one possible posi-
tion for oxygen loss and for the placement of Cu` and Ce4`.
Other possibilities of bonding and placements need to be
considered, especially for other doped superconductors.

For the case of 6N electrons, 4N/4"N doping sets, and
4N copper atoms [Fig. 5 illustrates one and a half doping
sets where the one set (1, 2, 3, 4) is similar to n#1, n#2,
n#3, n#4], a covalon-type Bloch sum is proposed, viz.,

t" (1, 2,2, 6N)"A
1

JN

4N~4
+

n/0,4, 8 2

e
2ni"n

4N t*
n`1,n`4

[33]

]
n~4
<

k/0,4

t
k`1,k`4

4N~4
<

m/n`4,n`82

t
m`1,m`4

,

in which the electron antisymmetrization operator is

A"[(2!)N (4!)N (6N)!]~1@2
(6N )!
+
k/1

dkPk , [34]

and ""0, 1, 2,2, N!1. Equations [29—34] represent
a qualitative description for the bonding of electrons from
the point of view of the covalon model. In forthcoming work
the details of the electron bonding in copper oxides and
their doped counterparts will be considered in the calcu-
lation of the electronic and vibrational states of different
superconductors.
For a simple illustration of the Covalon states of a cyclic
structure with N"3, 6N"18e~’s, 4N"12 copper atoms,
and ""0, 1, 2, we consider

t
1
(1, 2,2, 18)"[(2!)3 (4!)3 (18)!]~1@2

18 !

+
k/1

dkPk

]
1

J3
[t*

1,4
t

5,8
t
9,12

#e
2ni

3 t
1,4

t*
5,8

t
9,12

[35]

#e
4ni

3 t
1,4

t
5,8

t*
9,12

],

t
2
(1, 2,2, 18)"t

~1
(1, 2,2, 18), [36]

t
0
(1, 2,2, 18)"[(2!)3 (4!)3 (18)!]~1@2

18!

+
k/1

dkPk
[37]

]
1

J3
[t*

1,4
t
5,8

t
9,12

#t
1,4

t*
5,8

t
9,12

#t
1,4

t
5,8

t*
9,12

],

The two structures associated with t
1

and t
0

show the
different charge densities of the excited electronic states. The
motion of the various positions in the vibronic transitions is
similar to that of the charge transfer problem mentioned by
Bader (12), in Eq. [1], i.e.,

t"t
0
s1(Q

1
)

[38]

#

St
1
s0(Q

1
) DQ

1
LH/Q

1
Dt

0
s1 (Q

1
)T

E
0
#+u

1
!E

1

t
1
s0 (Q

1
).
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To compare this with BCS theory, in which the overall
momentum of the electron pair is p"+ (k!k)"0 in order
to satisfy the London equation, we choose the related condi-
tion "!""0 for the electronic and vibrational inter-
action together, i.e.,

t (1, 2,2, 6N)"t
0
(1, 2,2, 6N )s0(Q

~")

#+
"

St"s1 (Q
~") DQ

~"LH/Q
~" Dt

0
s0 (Q

~")T
E

0
!E"!+u

~"
[39]

]t" (1, 2,2 , 6N)s1 (Q
~").

This vibronic state, t" (1, 2,2, 6N)s1 (Q
~"), can also in-

clude our special Renner—Teller effect (Eqs. [24]—[27]) as
well as our special Jahn—Teller effect (cf. Eq. [28]) involving
vibronic degeneracy having special isotope effects. These
ideas may be used to open new avenues for considering
doping situations in superconductors.

X. CONCLUSIONS

We have extended the Jahn—Teller and Renner—Teller
effects, as well as the charge-transfer mechanism, to provide
improved descriptions of superconductivity. They are differ-
ent from Bipolaron theory (11), Davydov’s Bisoliton theory
(22), Anderson’s Resonating Valence Bond theory (23), and
the soliton model of polyacetylene by Su et al. (24). For
example, for the structural effects of superconduction, we
consider the special case of distant-neighbor interactions
and vibrations other than the totally antisymmeteric vibra-
tion of nearest neighbors. Furthermore, the adoption of
a cyclic structure for the crystal is different from a local
Jahn—Teller effect with, say D

4h
symmetry (25), and from

other local vibronic interactions in unit cells (26, 27). Also
our considerations of doped and high-¹

#
structures are

different (28—32). These considerations, based on notions of
chemical structure, will yield different properties of high-¹

#
superconductors than those derived from more physically
based models (33—38).
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